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Abstract Quantitative structure–diastereoselectivity rela-
tionships were studied for the intermolecular radical
addition of deuterium and allyltributyltin to chiral aryl-
sulfoxides by means of multiple linear regression and
artificial neural networks (ANN). The values of diastere-
oselectivity (%syn) of the compounds studied were well
correlated with the descriptors encoding the chemical
structure. Using the pertinent descriptors revealed by the
regression analysis, a square correlation coefficient of
0.9577 (s=5.3825) for the training set was obtained for the
ANN model in a 2–4–1 configuration. The results
obtained from this study indicate that the diastereoselec-
tivity of arylsulfoxide derivatives is strongly dependent
on the shape of the R and X groups.
Figure General structure of a-sulfinyl radicals
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Introduction

The control of stereoselectivity in the intermolecular reac-
tions of acyclic radicals is an interesting field of research [1,
2, 3]. The use of sulfoxides to induce stereoselectivity for
radical reactions has recently attracted much attention [4, 5,
6, 7, 8]. The stereoselectivity depends essentially on the
geometric properties and physicochemical characters of the
substituents attached to the a-sulfinyl radicals.

Due to the development of correlation analysis in organic
chemistry, the establishment of structure–chemical behavior
relationships has become a very interesting field that has
lead to efficient organic synthesis [9, 10]. Indeed, the model

obtained may be used as an aid for new synthetic routes or
the understanding of reaction mechanisms [11, 12].

In the present work, a combination of multiple linear
regression (MLR) [13] and artificial neural network
(ANN) [14, 15] techniques was used for modeling the
observed diastereoselectivity of the reaction of arylsul-
foxide radicals [16, 17, 18, 19] with allyltributyltin and
deuteriumtributyltin (Table 1). The %syn was considered
as a diastereoselectivity index.

As a consequence, there are two main effects that
should be revealed by this study:

1. The influence of the substituent effect at sites R, X and Z
2. The effect of interaction for two distinct substituents

(R and X)

Material and methods

Compounds studied

The chemical structures along with the observed diastereoselectiv-
ity data of the compounds used in this study are shown in Table 1.
The diastereoselectivity data were taken from various studies [16,
17, 18, 19].

Descriptors

The main step in our study was the choice of chemical structure. It
is obvious that the performance of the models depends mostly on
the parameters used to describe the molecular structures.

In this study, a set of descriptors related to physicochemical and
geometric properties of the molecules was used. All these
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Scheme 1 Reaction of arylsulfoxides radical with allyltributyltin
and deuteriumtributyltin



Table 1 Chemical structure of
chiral arylsulfoxides derivatives
and observed diastereoselectiv-
ity (%syn) (see Scheme 1)
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descriptors were calculated for the substituents R, X and Z
(Table 1).

The descriptors given below were calculated with pro-Demo
(TM) Revision 3.01 demo published by ChemSW Software (TM)
[20].

– Size and shape described by means of van der Waals volume
(V) and van der Waals surface (S).

– Molecular dimensions (length, width and height). Length (L) is
the distance along the screen x-axis between the left and
rightmost atoms plus their van der Waals radii. Width (W) is the
distance along the screen y-axis between the top and bottom-
most atoms plus their van der Waals radii. Height (H) is the
distance along the screen z-axis between the nearest and farthest
atoms plus their van der Waals radii.

– log P, the partition coefficient between n-octanol and water.
– Molar refractivity (MR).
– Molecular weight (MW).
– Hydrogen-bonding donors (HBD), hydrogen-bonding acceptors

(HBA).

Some other descriptors, V/L, V/W, W/H and ovality were
calculated on the basis of the descriptors elaborated.

– Ovality estimation (O), for each substituent was that given by
Bodor [21].

– O¼S=ð4pKÞ (1a)
– K¼ ð3V=4ppÞ2=3 (1b)

Data analyses

Multiple linear regression (MLR)

This method was used to generate linear models between
the diastereoselectivity (%syn) and the molecular de-
scriptors used. Because of the large number of descriptors
considered, a stepwise procedure combining the forward
and backward algorithms was used to select the pertinent
descriptors.

In order to avoid all difficulties in the interpretation of
the resulting models, pairs of variables with a correlation
coefficient greater than 0.70 were considered as intercor-
related. In such a situation, only one was included in the
screened model. The quality of the model was considered
as statistically sufficient on the basis of the squared
correlation coefficient (r2), standard deviation (s), and F-
statistics (F) when all parameters in the model were
significant at 95% confidence level (p<0.05).

The cross-validation (CV) procedure was employed
after variable selection to test the validity and predictive
ability of the models.

In this work the leave-one-out procedure was used to
evaluate the predictive ability of the MLR and ANN. The
cross-validation coefficient q2 was calculated according
the following equation: [22]

q2¼ 1� ðPRESS=VarianceÞ ð2Þ
where PRESS means predictive residuals.

Artificial neural networks (ANN)

The application of ANNs to solve problems in chemistry
is a recent field of research. ANNs have been applied to
the investigation of QSARs [23, 24, 25, 25].

Neural networks models are known to be very
effective in representing the nonlinear relationships
between variables in complex systems. Most of the
applications of ANNs to chemistry use the back-propa-
gation algorithm (BPA) [26]. Consequently, it has been
employed in the present study.

Results and discussion

Multiple linear regression analysis

Multiple linear regression analysis was performed on the
compounds described in Table 1, a few suitable models
were obtained and the best one was selected and
presented in Eq. (3):

%syn¼ 91:5079ð�4:5226Þ � 14:2756ð�1:0485ÞSðRÞ
þ1:5875ð�0:2689ÞV=LðXÞ ð3Þ

n¼ 27 r2¼ 0:8486 s¼ 7:7891

The statistical quality of Eq. (3) is moderate and accounts
for 85% (r2=0.8486) of the information represented by
data. The high diastereoselectivity is associated with low
surface [S(R)] with increased shape [V/L(X)]. The calcu-
lated contributions [27] for descriptors S(R) and V/L(X)
were 70% and 30% respectively. There are two com-
pounds with a large estimation error for Eq. (3) (com-
pounds 3 and 14), and when these compounds were
excluded the standard deviation goes from 7.7891 to
6.3051.

The plot of experimental versus calculated diastereos-
electivity is given in Fig. 1a. Cross-correlation analysis
showed that all pairwise correlations were �0.6681 in this
equation, also indicating a low collinearity (see Table 2).

Cross-validation

In the cross-validation phase, 27 subsets were created
according to the leave-one-out method and the output of
the removed compound was predicted for each subset
[14]. They yielded a q2=0.898, indicating a good quality
of the model according to Wold [28].

Artificial neural network (ANN)

In order to test the possibility of nonlinear effects on the
data and to establish a more accurate model, we used a
neural network technique [29, 30].

The ANN [20] was trained by the back-propagation
(BP) of errors algorithm [14] and had the following
architecture:
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– An input layer including pertinent descriptors from the
MLR.

– A hidden layer for which the ratio of the number of
data points in the training set and the number of
connections controlled by the network, r, is critical to
the predictive power of the neural net. The range
1.8<r<2.2 [r=(number of data points in the training
set)/(number of adjustable weights controlled by the
network)] [15] was used as a guideline for an
acceptable number of neurons in the hidden layer. It
is claimed that for r�1.0 the network simply mem-
orizes the data, whereas for r�3.0 the network loses
its ability to generalize.

– Output layer of one neuron, representing the diastere-
oselectivity (%syn). The input values were normalized.

All the trials were made for 1,000 iterations and repeated
ten times to make sure of the reproducibility of results.
The connection weights were stable after 800 iterations.

The best model is that corresponding to the optimum r2

and s parameters (see Table 3). A hidden layer of four
neurons was selected.

We obtained a square correlation coefficient of 0.9577
(n=27) between calculated and observed diastereoselec-
tivity (%syn) with a standard deviation of 5.3825.

This preliminary study enables us to conclude that the
ANN with (2–4–1) architecture was able to establish a
satisfactory relationships between the pertinent descrip-
tors and the diastereoselectivity of arylsulfoxide deriva-
tives.

We used the same procedure as for the MLR analysis
and obtained a coefficient of cross-validation equal to
q2=0.918. The model obtained was considered to be good
predictive one, according to Wold [28]. The performances
of the ANN are superior to that of MLR and this indicates
the presence of nonlinearity in the data since the
efficiency of descriptors was increased. The combination
between MLR and ANN was fruitful.

The plot in Fig. 1b indicates that there is a significant
correlation between actual values and calculated values of
diastereoselectivity (%syn) from the ANN for the training
sets.

Analysis of descriptor’s contribution in ANN model

To estimate the relative contribution of descriptors, we
chose two different approaches:

(i) The contribution of descriptors i (i=1–2) was estimated
from the trained 2–4–1 configuration network. The
descriptor under study was removed from the 1–4–1
ANN together with its corresponding weights. Then
the network (1–4–1) calculated the output of each
molecule as usual. The mean of the deviations of the
absolute values Dmi between the observed diastereos-
electivity and the estimated diastereoselectivity for all
compounds was calculated. This process was reiterated
for each descriptor. Finally, the contribution Ci [31] of
descriptor i is given by:

Ci¼ 100�Dmi=
X2

i¼1

Dmi ð4Þ

(ii) We analyze deviations when a given descriptor is
removed and for the full set of descriptors. This
approach is an extension of the previous one
proposed by Chastrette et al. [32]. In this way we
could estimate the contribution of each descriptor
removed from the model. Table 4 shows that the two
methods give the same results.

Fig. 1a, b Experimental and predicted values from MLR (a) and
ANN (b) respectively for training sets

Table 2 Correlation matrix

%syn S(R) V/L(X)

%syn 1 0.9409 �0.7695
S(R) 1 �0.6681
V/L(X) 1

Table 3 Variation ofr2 ands with the number of neurones of the
hidden layer

Hidden neurones r2 (training) s (training)

2 0.9567 5.4494
3 0.9573 5.4071
4 0.9577 5.3825
5 0.9577 5.3837
6 0.9577 5.3838
7 0.9577 5.3884
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These results, indicate that the relative importance of the
descriptors varied in the following order: S(R)>V/L(X).
These calculations confirm the great effect of the
substituents R and X on the diastereoselectivity. The
information obtained from the established model can
eventually allow us to predict the diastereoselectivity of
arylsulfoxides [7, 8].

The a-sulfinyl radicals possess two minimum-energy
conformations s-cis and s-trans (Fig. 2), the s-cis being
more stable by 1.0–3.5 kcal mol�1. [19] These two
conformations correspond to those predicted by stereo-
electronic interactions, the singly occupied orbital is
perpendicular to the S–O bond for optimal overlap [33],
and by the minimization of steric and eclipsing interac-
tions.

Therefore, the repulsion steric interactions between the
methyl group and a substituent X in the ortho position of
the phenyl ring destabilized the s-trans conformation of
the radical relative to the s-cis. With secondary and
tertiary R groups, the s-cis conformation is more stable
because of strong steric interactions between the R group
and the aryl moiety in the s-trans conformer. Depending
on the surface of the R groups, the s-cis conformer is
attacked preferentially with a like (lk) (R=methyl, primary
alkyl groups) or an unlike (ul) topicity (R=secondary and
tertiary groups). The lk topicity is favored by steric factors
[S(R) and V/L (X)] since the attack occurs anti to the
bulky aryl group (transition state A). Due to pyramidal-
ization in the transition state [34], the lk attack generates
eclipsing interactions between the R group and the
oxygen atom at sulfur. These eclipsing interactions
become dominant with large surface alkyl groups. Attack
from the more hindered face (ul topicity) leading to the
staggered transition state B becomes more favorable
(Fig. 2).

To ensure that the results obtained in MLR and ANN
were not due to chance and to lend credence to our
results, we have run a scrambling experiment [21, 22, 23].
The dependent variable %syn is randomly scrambled and

then the same algorithms used in MLR and ANN run once
again. The statistical results as the correlation coefficient
square r2 and the standard deviation s of its results are
compared with the r2 and s of the MLR and ANN models
developed in this work. The r2 values were 0.2049 and
0.6303 compared with 0.8486 and 0.9577 for the s values
we obtained 24.7436 and 15.9076 compared with 7.7891
and 5.3825 for the training set in MLR and ANN,
respectively. This test confirms and clearly shows that the
descriptors selected in this study describe the diastereos-
electivity studied very well.

Conclusion

Taking into account the complexity of the modeled
diastereoselectivity, we were able to show with only two
2-D descriptors, that the diastereoselectivity of the
arylsulfoxide derivatives was strongly controlled by the
steric factors of the substituents attached to the a-sulfinyl
radicals.

The pattern obtained with the ANN approach is more
efficient than regression analysis, since it reveals the
nonlinear effects in a-sulfinyl radicals. In addition, the
approach used for the contributions and classification of
descriptors in the ANN may be of help in quantitative
structure–diastereoselectivity relationships interpretation.
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